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1 Introduction

The compactification of string theory from 10 to 4 dimensions is a subject of both formal

and phenomenological interest. Many methods of compactification result in moduli: mass-

less 4D scalar fields which correspond to deformations of the compactification geometry.
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Given the observed absence of massless scalars, these moduli are phenomenologically un-

desirable. As a result, much attention has been focused on the question of how moduli can

be stabilized, i.e. how features can be added to a simple compactification so that most or

all of the 4D scalar fields become massive. We can consider this question in three different

levels of detail:

1. Is the proposed stabilization method consistent? That is, does the stabilized com-

pactification still solve the 10D equations of motion?

2. Which moduli are stabilized, and what are their VEVs?

3. What are the masses of the moduli?

In this paper we study compactifications of IIB string theory on Calabi-Yau orientifolds,

with RR and NS 3-form flux in the compact directions. The flux attractor equations [1]

describing the stabilization of the moduli strongly resemble black hole attractor equations,

and we will exploit this similarity to address the questions above.

We will focus our attention on one of the 10D equations of motion. If the (real) 3-form

RR flux is F3, the (real) 3-form NS flux is H3, and the complex axio-dilaton is τ, we define

the complex 3-form flux

G3 ≡ F3 − τH3 . (1.1)

For large classes of compactifications to 4D Minkowski space, the 10D equations of motion

require [2, 3] that G3 be imaginary self dual (ISD):

∗6 G3 = iG3 . (1.2)

Because ∗6 involves the metric, a non-zero G3 stabilizes some or all of the complex structure

moduli and τ. Specifically, the complex structure of the Calabi-Yau is fixed so that G3 has

only (0, 3) and/or (2, 1) components. If no such combination of complex structure and τ

exists, the choice of F3 and H3 is not consistent with compactification to Minkowski space.

In order to analyze (1.2) in detail we may expand G3 and the holomorphic 3-form, Ω3, on a

judiciously chosen basis of 3-cycles. This procedure results in the flux attractor equations,

as we review in section 2.

The resulting algebraic equations suffer an apparent inconsistency, in that there are

many more equations than moduli. If n = b3/2 − 1 is the number of (2, 1) cycles on the

Calabi-Yau, we will find 4n + 4 different (real) equations and only 2n + 2 (real) moduli.

While this mismatch suggests that the system of equations is overconstrained, we will show

that this is not the case. In section 3 we will show that the 4n + 4 attractor equations

determine both the VEVs of the moduli and the independent parameters of their mass

matrix, as well as the gravitino mass. All of these outputs together constitute 4n + 4

parameters, the same as the number of input fluxes.

Having established that the flux attractor equations determine both the moduli VEVs

and certain mass parameters, in section 4 we develop an algorithm to find them. We take

inspiration from OSV [4], who solved the black hole attractor equations by introducing a

mixed ensemble. Accordingly, we first solve the “magnetic” half of the attractor equations,
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writing our 4n + 4 parameters in terms of the 2n + 2 magnetic fluxes and 2n + 2 as-yet-

undetermined electric potentials. We then show that the “electric” attractor equations can

be rewritten in terms of a generating function, and that they can be formally solved by a

simple Legendre transform.

The existence of the generating function G is the principal result of this paper. If one

can determine it as a function of arbitrary fluxes, its derivatives will give back the moduli

VEVs and the mass parameters. Thus G provides a compact summary of the flux attractor

behavior, and this suggests that we study the properties of G directly. We initiate such a

study in section 5, where we find a general formula for G :

G =

∫

F3 ∧ H3 − 2Vol2m2
3/2. (1.3)

Here the gravitino mass is considered as a function of arbitrary fluxes.

We proceed in section 6 by considering an explicit example. We use the prepotential

F = Z1Z2Z3/Z0, a setting with sixteen distinct fluxes. For a reduced set of eight of these

fluxes we are able to completely solve the flux attractor equations. We then argue that the

general case can be solved as well, by appealing to duality transformations.

For the sake of simplicity, we will discuss many of our results in the context of large-

volume, unwarped compactifications. These lead to relatively well-understood 4D theories,

and we can easily translate our findings about the 10D geometry into statements about

4D physics. However, our 10D reasoning applies equally well to strongly-warped com-

pactifications and some non-geometric compactifications [5]. Since we are analyzing the

ISD condition, which is quite robust, we expect our qualitative understanding of the flux

attractor behavior, such as the existence of a generating function, to be similarly robust.

On the other hand the detailed mass spectrum depends on the Kähler potential, and is

therefore less robust.

As we have mentioned above, the solution of the flux attractor equations is controlled

by a single generating function, which depends on the fluxes alone. In the case of the black

hole attractor, the analogous function turned out to the the equilibrium value of the black

hole entropy. It is tempting to speculate that the flux attractor equations also describe a

thermodynamic system. Ultimately, the underlying statistical system may be related to a

classical measure on this patch of the string theory landscape. We conclude in section 7 by

summarizing the issues that must be resolved in order to make this interpretation sound.

2 From the ISD condition to attractor equations

In this section we review some basic aspects of special geometry and flux compactifications.

We then provide a simple derivation of the flux attractor equations.

2.1 Special geometry

Most of the objects we are interested in, including F3, H3, and Ω3, are 3-forms on the

compact space. It is useful to expand these 3-forms on a real basis
{

αI , β
I
}

, I = 0, . . . , n,

– 3 –
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satisfying

∫

αI ∧ βJ = δJ
I , (2.1)

∫

αI ∧ αJ =

∫

βI ∧ βJ = 0 . (2.2)

We specify the NS fluxes H3 and RR fluxes F3 with respect to this basis as

H3 = mI
hαI − eh

I βI , (2.3)

F3 = mI
fαI − ef

I βI . (2.4)

There is an Sp (2n + 2, R) symmetry1 that corresponds to a change in the basis
{

αI , β
I
}

.

The fluxes
{

mI
h, eh

I

}

and
{

mI
f , ef

I

}

transform in the fundamental of Sp (2n + 2, R) ,

and objects with an index I, J,K . . . transform in the fundamental of SO (n + 1, R) ⊂

Sp (2n + 2, R) .

We can also expand the holomorphic 3-form with respect to the real basis,

Ω3 = ZIαI − FIβ
I . (2.5)

The combination
{

ZI , FI

}

is called a symplectic section [6], and also transforms in the

fundamental of Sp (2n + 2, R). While the fluxes eh,f
I and mI

h,f were all independent pa-

rameters, the FI and ZI are holomorphic functions of the complex structure moduli. For

our purposes, it is sufficient to treat the FI as functions that are holomorphic and homo-

geneous of degree 1 in the ZI . The functional form of the FI is the only information about

the Calabi-Yau geometry that we will use.

The holomorphic 3-form is only defined up to a holomorphic rescaling,

Ω3 → f
(

ZI
)

Ω3 . (2.6)

These are the Kähler transformations. If, under Kähler transformations, an operator is

simply multiplied by h powers of f
(

ZI
)

and h powers of f (ZI), we will say that it is

Kähler covariant with weight
(

h, h
)

. For example, Ω3 has weight (1, 0) .

Physical moduli must be invariant under Kähler transformations. For example, on a

patch where Z0 6= 0 we may use the ratios

zi ≡
Zi

Z0
, (2.7)

where i = 1, . . . , n. The zi are clearly Kähler invariant. Unfortunately, this breaks the

SO (n + 1) symmetry enjoyed by the ZI , so we will sometimes use an alternative approach

to formulating Kähler invariant quantities. We will utilize a coefficient C which has weight

(−1, 0) , so that the products CZI are Kähler invariant.

1Dirac quantization conditions require the magnetic fluxes mI
h,f and electric fluxes eh,f

I to take integer

values, breaking Sp (2n + 2, R) to a discrete subgroup.
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Because Kähler transformations are local, ordinary derivatives of Kähler covariant

functions do not give new Kähler covariant functions. We introduce the Kähler potential

Kz = − log i

∫

Ω3 ∧ Ω3 , (2.8)

which generates the metric on moduli space,

gij = ∂i∂jKz . (2.9)

By construction, eKz has weight (−1,−1) . This motivates the definition of the Kähler

covariant derivative of an operator of weight
(

h, h
)

,

DiO
(h,h) ≡ e−hKz∂i

(

ehKzO(h,h)
)

= ∂iO
(h,h) + hO(h,h)∂iKz . (2.10)

We note that since the Kähler potential is real, the Kähler covariant derivative of a holo-

morphic object is not itself holomorphic.

It is especially interesting to consider derivatives of the holomorphic 3-form. An or-

dinary derivative with respect to the complex structure moduli gives a sum of (3, 0) and

(2, 1) forms,

∂iΩ3 = kiΩ3 + χi . (2.11)

If we instead use a Kähler covariant derivative, the Kähler potential is constructed so that

the (3, 0) piece cancels and we are left with only a (2, 1) form,

DiΩ3 = χi . (2.12)

This establishes a convenient complex basis for 3-forms on the Calabi-Yau, {Ω3, DiΩ3,

DiΩ3, Ω3} [7]. The intimate connection between the complex structure of a Calabi-Yau

and its cohomology will be the primary tool that we use to analyze the ISD condition (1.2).

2.2 S-Duality

In addition to Kähler transformations, S-duality helps organize the flux attractor equations.

Type IIB supergravity has an SL (2, R) symmetry,2 under which

τ →
aτ + b

cτ + d
, (2.13)

(

F3

H3

)

→

(

a b

c d

)(

F3

H3

)

, (2.14)

with the constraint

ad − bc = 1 . (2.15)

The transformation of the complex flux G3 under S-duality can be deduced from the

transformations of F3, H3, and τ :

G3 →
G3

cτ + d
. (2.16)

2Quantum effects break this to SL (2, Z) , but the distinction between the two groups will not be relevant

to our analysis.
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We will frequently encounter Im (τ) , which transforms as

Im (τ) →
Im (τ)

|cτ + d|2
. (2.17)

2.3 4D physics of large volume compactifications

The flux attractor equations are simply a rephrasing of the ISD condition (1.2). We could

discuss the ISD condition entirely from the 10D point of view, but we find it useful to make

reference to the resulting 4D effective theory. As long as the volume of the Calabi-Yau

is large relative to the string scale, and regions of strong warping are all string scale, the

result is a 4D, N = 1 theory with the GVW superpotential [8, 9],

W =

∫

CY
G3 ∧ Ω3 , (2.18)

and Kähler potential,3

K = Kz + Kτ + Kt (2.19)

= − log

[

i

∫

CY
Ω3 ∧ Ω3

]

− log [2Im (τ)] − 2 log [Vol] . (2.20)

These compactifications are reviewed in e.g. [10–13]. While both the superpotential and

Kähler potential receive a variety of phenomenologically interesting corrections [14–16], we

will not consider their effects here. Note that the 4D Kähler potential contains the Kähler

potential (2.8) that we introduced earlier for the Calabi-Yau. This relationship between the

4D kinetic terms and the Calabi-Yau geometry is a special characteristic of the large-volume

limit, and breaks down in the presence of significant warping (see e.g. [17–22]).

In addition to the complex structure moduli zi and τ, the 4D theory also contains a

number of Kähler moduli ta. Rather than depending on the holomorphic volumes of three-

cycles, these measure the actual volumes of two- and four-cycles. Since the Kähler moduli

do not appear in the superpotential, their F-terms are just

Fa = DaW = W∂aKt . (2.21)

When summed up they give
∑

a |Fa|
2 = 3 |W |2 , so the standard expression for the scalar

potential simplifies to

V = eK





∑

A=i,τ,a

|DAW |2 − 3 |W |2



 (2.22)

= eK

(

∑

i

|DiW |2 + |DτW |2
)

. (2.23)

When W 6= 0 the F-terms for the Kähler moduli (2.21) are non-vanishing, so SUSY is

broken. However, the potential (2.22) is positive definite and has a global minimum when

3The volume of the Calabi-Yau is determined by the Kähler moduli, which are not stabilized by 3-form

fluxes. We have little to say about the factors of the volume that appear, but include them for completeness.
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Fi = DiW = 0 and Fτ = DτW = 0. Because of this, we require that Fi = Fτ = 0,

regardless of whether SUSY is broken.

The simple form of the Kähler potential gives the Fi = Fτ = 0 conditions simple

geometric interpretations. For the complex structure moduli we find

DiW =

∫

CY
G3 ∧ DiΩ3 =

∫

CY
G3 ∧ χi , (2.24)

so that setting Fi = 0 is equivalent to requiring that G3 have no (1, 2) component. In

addition one can verify that

Dτ

∫

G3 ∧ Ω3 = −
1

τ − τ

∫

G3 ∧ Ω3 , (2.25)

so setting Fτ = 0 is equivalent to requiring that G3 have no (3, 0) component. Thus we have

found that minimizing the potential (2.22) is equivalent to imposing the ISD condition (1.2).

This is one of the reasons that the GVW superpotential is believed to accurately describe

large-volume compactifications.

2.4 Flux attractor equations

The flux attractor equations were originally derived in [1] by considering F-theory com-

pactified on CY3 × T 2. For the sake of variety, we present a slightly different derivation

which does not involve an explicit embedding in F-theory.

Our goal is to make the implications of the ISD condition (1.2) more explicit. Since

an ISD 3-form can have only (0, 3) and (2, 1) pieces, we can expand it with respect to the

complex basis introduced at the end of section (2.1) as:

G3 = −iIm (τ)
[

CΩ3 + CiDiΩ3

]

. (2.26)

The overall factor of −iIm (τ) is included for convenience. Note that C and Ci both have

weight (−1, 0) under Kähler transformations, and transform under S-duality as

C → (cτ + d) C , (2.27)

Ci → (cτ + d) Ci . (2.28)

In order to make (2.26) completely explicit we must specify the symplectic section
{

ZI , FI

}

,

as this determines how Ω3 depends on the complex structure moduli. We can then compute

the Kähler covariant derivatives DiΩ3, so that (2.26) becomes an algebraic equation for

the complex structure moduli and the axio-dilaton.

One undesirable aspect of (2.26) is that the l.h.s. contains both the real fluxes F3

and H3, which we think of us “inputs,” and the axio-dilaton τ, which we think of as an

“output.” This is rectified by writing

(

G3

G3

)

=

(

1 −τ

1 −τ

)(

F3

H3

)

= −iIm (τ)

(

CΩ3 + CiDiΩ3

−CΩ3 − C
i
DiΩ3

)

, (2.29)
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which we can easily invert:

(

F3

H3

)

= −
1

2

(

−τ τ

−1 1

)(

CΩ3 + CiDiΩ3

−CΩ3 − C
i
DiΩ3

)

(2.30)

=





Re
[

τ
(

CΩ3 + C
i
DiΩ3

)]

Re
[

CΩ3 + C
i
DiΩ3

]



 . (2.31)

Now the l.h.s. of the attractor equations consists entirely of quantities that define the

vacuum (fluxes), while the r.h.s. depends on the moduli and the symplectic section (choice

of
{

ZI , FI

}

).

The equations in (2.31) are equations for 3-forms, rather than for ordinary numbers.

While this makes their geometric implications clear, if we want to actually solve the equa-

tions it will be helpful to integrate them against a real basis of 3-forms. We have already

introduced the required notation in (2.3)–(2.5), so we simply quote the result,

mI
f = Re

[

τ
(

CZI + C
i
DiZI

)]

, (2.32)

mI
h = Re

[

CZI + C
i
DiZI

]

, (2.33)

ef
I = Re

[

τ
(

CFI + C
i
DiFI

)]

, (2.34)

eh
I = Re

[

CFI + C
i
DiFI

]

. (2.35)

One benefit to writing the attractor equations in this form is that there is manifestly one

real equation for each real flux, for a total of 4n + 4 real equations. We will compare this

to the number of moduli and other parameters quite carefully in the next section.

One may wonder to what extent it makes sense to call (2.32)–(2.35) “attractor equa-

tions.” The word “attractor” implies some sort of flow along which all information about

a set of initial conditions is lost, but we have not introduced any notion of attractor flow.

We note that in the study of extremal black holes, there is a useful distinction between

the entire attractor flow, which takes place between spatial infinity and the horizon, and

the attractor equations, which describe how the moduli are stabilized at the horizon. Be-

cause (2.32)–(2.35) are closely analogous to the black hole attractor equations, we consider

calling them “attractor equations” to be only a minor abuse of the term.

3 Attractor equations and mass matrices

In expanding out the flux attractor equations, we found 4n+4 real equations4 (2.32)–(2.35).

This is many more than the 2n + 2 real moduli VEVs we want to fix, the zi and τ. The

origin of this mismatch is that there are additional “outputs” of the attractor equations,

namely the coefficients C and Ci. Including these outputs gives 4n+4 real variables, equal

to the number of attractor equations. We will see that these coefficients determine the

mass spectrum of the 4D theory.

4n = b3/2 − 1, so that n + 1 is the number of N = 1 vector multiplets in the 4D theory.

– 8 –
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3.1 Black hole attractor equations and the entropy

While the Ci are a new feature of the flux attractor equations, the coefficient C also appears

in the more familiar context of BPS black hole attractor equations. We begin by discussing

the role it plays there. Suppose we have constructed a 4D BPS Reissner-Nordström black

hole by wrapping D3 branes on the 3-cycles of a Calabi-Yau manifold. The charges of the

black hole can be described by a 3-form, F3. We can expand a general real 3-form either

against a real basis, or against the complex basis introduced in section 2.1:

F3 = pIαI − qIβ
I (3.1)

= Re
[

CΩ3 + CiDiΩ3

]

. (3.2)

The expression for the spacetime central charge of the black hole is

WBH =

∫

F3 ∧ Ω3 , (3.3)

and the BPS conditions are DiWBH = 0. Since F3 does not depend on the moduli, the BPS

conditions reduce to ∫

F3 ∧ DiΩ3 = 0 , (3.4)

i.e. they require that the (1, 2) piece of F vanishes. This simplifies the general expan-

sion (3.2) to

F3 = 2Re [CΩ3] . (3.5)

This is the standard black hole attractor equation, originally derived in [23–25] and reviewed

in [26–28].

If we expand (3.5) on the real basis
{

αI , β
I
}

we will find a counting problem. Although

there are 2n + 2 real equations, there are only 2n real physical moduli, the zi. In order to

understand the mismatch, we first note that the righthand side of (3.5) contains 2n + 4

real parameters,
{

C,ZI
}

. Since both C and ZI transform under Kähler transformations

we can eliminate one complex parameter, leaving 2n + 2 Kähler invariant parameters.

For example, if we assume that Z0 6= 0, we can take the Kähler invariant parameters

to be
{

CZ0, zi = Zi/Z0
}

. More generally, the number of Kähler invariant parameters is

equal to the number of attractor equations. The non-trivial feature is that, in addition to

determining the values of the moduli zi, the black hole attractor equations fix the Kähler

invariant quantity CZ0.

It is natural to ask what the physical significance of the additional parameter is. One

important place where it appears is in the black hole entropy,

S

π
= eKz |WBH|

2 (3.6)

=
e−Kz

|Z0|2
·
∣

∣CZ0
∣

∣

2
, (3.7)

since (3.3) and (3.5) imply that WBH = −iCe−Kz . In the final expression we have written

the black hole entropy as the product of two Kähler-invariant factors, with the first factor

– 9 –
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depending only on the moduli zi. We see that a change in CZ0 leads to a change in the

entropy, with the moduli held fixed.

It is sometimes stated that solving the attractor equations is equivalent to minimizing

an effective potential. Our analysis shows that, in fact, the attractor equations simulta-

neously determine both the values of the moduli and the value of the effective potential.

Simply minimizing the effective potential with respect to the moduli would have given us

2n real equations, rather than 2n + 2, and we would have had to insert the solutions for

the moduli back into the effective potential to find its value at the minimum.

3.2 Fermion masses

Let us now return to the flux attractor equations. (2.32)–(2.35) constitute 4n + 4 real

equations, while the moduli zi and τ constitute 2n+2 real parameters. Our analysis of the

black hole attractor equations revealed that CZ0 contributes two more real independent

parameters, but we are still left with 2n more equations than parameters. The new features

in the flux attractor are the coefficients Ci, first introduced in (2.26). Including these in our

set of Kähler-invariant parameters as
{

τ, zi, CZ0, CiZ0
}

, we have accounted for everything

that appears on the righthand side of (2.31), for a grand total of 4n + 4 parameters. Just

as in the black hole case we found that different choices of charges could lead to the same

moduli but different entropies, here different choices of the fluxes can lead to the same

moduli, but different values of CZ0 and CiZ0.

In large-volume compactifications, the role of the black hole entropy is played by the

gravitino mass:

m2
3/2 = eK |W |2 , (3.8)

Indeed, if we substitute in the expressions (2.18) for the superpotential and (2.20) for the

Kähler potential, we find

m2
3/2 =

e−Kz Im (τ)

2 |Z0|2 Vol2
·
∣

∣CZ0
∣

∣

2
. (3.9)

Just as CZ0 determined the entropy of the black hole attractor, it determines the gravitino

mass for the flux attractor.

While we understand well enough what it means to solve for the VEVs of zi and τ, and

we know that C is related to the gravitino mass, we need to develop a physical interpretation

of the Ci. We’ll first observe that the Ci appear when we consider the second derivatives

of the superpotential:

DiDjW =

∫

G3 ∧ DiDjΩ3 (3.10)

=

∫

G3 ∧
(

Fijkχ
k
)

(3.11)

= Im(τ)e−KzFijkC
k , (3.12)

where [29]

Fijk = ieKz

∫

Ω3 ∧ ∂i∂j∂kΩ3 (3.13)
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depends on both the moduli and the symplectic section.5 We also need the mixed deriva-

tives,

DτDiW = −

∫

G3 ∧ χi

τ − τ
(3.14)

= −
1

2

∫

(

CΩ3 + Cjχj

)

∧ χi (3.15)

=
i

2
C

j
gije

−Kz . (3.16)

Here we used (2.24) and (2.25). Also, in the last step we used the relationship between the

metric on complex structure moduli space (2.9) and the (2, 1) forms (2.11),

gij = −

∫

χi ∧ χj
∫

Ω3 ∧ Ω3

. (3.17)

The remaining second derivative vanishes,

DτDτW =
2

(τ − τ)2

∫

G3 ∧ Ω3 (3.18)

= 0 , (3.19)

since G3 has no (0, 3) piece.

The second derivatives of the superpotential generically determine the masses of the

components of chiral multiplets. The standard expression [30] for the spinor mass matrix

in 4D N = 1 supergravity is

mαβ =

(

DαDβW −
2

3
(DαW ) (DβW ) − Γc

αβDcW

)

m3/2

W
. (3.20)

Since the Kähler moduli are not stabilized, we will only consider α = i, τ. The moduli space

factorizes, so the connection ΓA
BC will have no mixed components, Γa

αβ = 0. Imposing the

global minimum condition DiW = DτW = 0 reduces the mass matrix to

mαβ = eK/2

√

W

W
DαDβW . (3.21)

Note that the overall phase
√

W/W could be absorbed into the definition of the fermions,

though we will not do so here. Substituting in the second derivatives computed above, the

fermion mass matrix simplifies to

(

mij miτ

mτi mττ

)

=
m3/2

C





FijkC
k − 1

2iIm(τ)gijC
j

− 1
2iIm(τ)gijC

j
0



 . (3.22)

Here we used (3.21) and (3.8), substituted in the second derivatives (3.12), (3.16),

and (3.19), then simplified using (2.8), (2.18), (2.26), and (3.17). This demonstrates how,

5For cubic prepotentials and physical moduli zi = Zi/Z0,
R

Ω3 ∧ ∂i∂j∂kΩ3 =
`

Z0
´2

Cijk.

– 11 –



J
H
E
P
0
7
(
2
0
0
9
)
0
4
9

in the large volume scenario, the Ci determine the structure of the fermion mass matrix.

These masses remain finite even in the limit m3/2 ∼ |C| → 0, since the ratio m3/2/C

approaches a finite value.

A few comments are in order. First, the fermion mass matrix has 2n+2 real eigenvalues,

two more than there are parameters Ci. This indicates that we cannot independently

determine the masses of all of the moduli — for example, we could consider choosing the

masses of the zi, but then the mass of τ would be determined. It is also interesting that

the form of mij suggests a generalized Higgs mechanism. If we think of the Fijk as Yukawa

couplings, than Ck appears to play the role of a Higgs vacuum expectation value. While

the Ck do not correspond to the expectation values of any dynamical scalars, it is possible

that they can be interpreted as the expectation values of auxiliary fields. Finally, if we can

make Im (τ) = 1/gs large, then the smallest fermion mass will be roughly m3/2g
2
s . It would

be interesting to see if such a light mode is of phenomenological interest, perhaps at an

intermediate scale.

3.3 Scalar masses

In supersymmetric vacua, the masses of scalar fields should match the masses of their

fermionic partners. However, the no-scale vacua that we consider generically break super-

symmetry. While the F-terms for the complex structure moduli and axio-dilaton vanish,

DiW = DτW = 0, the F-terms for the Kähler moduli only vanish when W = 0, as shown

in (2.21). In this case, the scalar mass-squared matrix takes the following form:

M2 =

(

Mαβ Mαβ

Mαβ Mαβ

)

, (3.23)

M2
αβ = eKW (DαDβW + DβDαW ) , (3.24)

M2
αβ

= eK
[

gγδDαDγWDβDδW + |W |2 gαβ

]

. (3.25)

While (3.24) and (3.25) would be standard expressions for a theory with only the complex

structure moduli and axio-dilaton, we verify in appendix A that they also hold when Kähler

moduli are included, and supersymmetry is broken in that sector. Note that when W = 0,

i.e. when supersymmetry is preserved, M2
αβ vanishes and M2

αβ
= gγδmαγmδβ , as expected.

When W 6= 0, the scalar masses are lifted above the fermion masses, and the splitting of

the masses-squared is of order m2
3/2 = eK |W |2 ∼

∣

∣CZ0
∣

∣

2
.

4 A generating function for the flux attractor equations

In this section we develop an algorithm which, in principle, solves the flux attractor equa-

tions. To do so we adapt the OSV solution of the black hole attractor equations [4]. We

begin with a change of variables designed to automatically solve the magnetic half of the

attractor equations. Next, we rewrite the electric half of the attractor equations as deriva-

tives of a generating function. Finally, a Legendre transform provides a formal solution of

the attractor equations.
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The generating function itself is quite interesting. In [4], the generating function

governing the black hole attractor turned out to be the free energy of the black hole. Our

interest in the generating function is not restricted to this section, rather we will discuss

some of its general properties in section 5.

4.1 An alternative formulation of the attractor equations

The flux attractor equations (2.32)–(2.35) contain Kähler covariant derivatives, which we

find much less convenient than ordinary derivatives. We therefore consider a modified

version of (2.26) that does not have this problem:

G3 = −iIm (τ)
[

CΩ3 + LI∂IΩ3

]

, (4.1)

where C and the LI are coefficients. Note that we differentiate with respect to the ZI , not

the zi.

The ISD condition (1.2) allows only (2, 1) and (0, 3) pieces in the complex flux G3.

While the ansatz (4.1) does not contain a (1, 2) piece, equation (2.11) shows that the ∂IΩ3

term includes a (3, 0) piece. Since the ISD condition (1.2) forbids such a term, we must

choose the LI so that it is projected out. The appropriate condition on the LI is

LI∂IKz = 0 . (4.2)

After imposing this condition, the resulting G3 has only (0, 3) and (2, 1) pieces. We thus

conclude that (4.1) and (4.2) together are equivalent to (2.26), with

Ci =
∂zi

∂ZI
LI . (4.3)

If we think of the Ci as given, then this fixes n of the n + 1 components of LI , and (4.2)

fixes the final component.

As in section 2.4, we can expand (4.1) and find a set of real attractor equations. This

is equivalent to replacing CiDi → LI∂I in (2.32)–(2.35) and adding the constraint (4.2).

The resulting attractor equations are:

mI
h = Re

[

CZI + LI
]

, (4.4)

mI
f = Re

[

τCZI + τLI
]

, (4.5)

eh
I = Re

[

CFI + LJFIJ

]

, (4.6)

ef
I = Re

[

τCFI + τLJFIJ

]

, (4.7)

0 = LI
(

F I − Z
J
FIJ

)

, (4.8)

where we have introduced FIJ ≡ ∂IFJ , and used (2.5) to make the constraint (4.2) more

explicit. The magnetic attractor equations (4.4) and (4.5) are simpler than their coun-

terparts (2.32) and (2.33), in that the CiDiZ
I term reduces to LI . Similarly, the electric

attractor equations (4.6) and (4.7) are simpler than (2.34) and (2.35) since the Kähler

covariant derivatives have been replaced with ordinary derivatives.
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Another benefit of these reformulated attractor equations is that the LI transform in

the n + 1 of SO (n + 1) , just like the ZI and the fluxes, and in contrast to the Ci. This

suggests solving (4.4)–(4.7) for CZI and LI , treating the LI on an equal footing with the

CZI , then solving (4.8) for τ. This procedure is more practical than solving (2.32)–(2.35)

for the n+1 vector CZI , n vector Ci, and scalar τ, even though the results are equivalent.

We will demonstrate this by completely solving an explicit example in section 6.

4.2 Magnetic attractor equations and the mixed ensemble

We now solve the flux attractor equations by adapting the OSV procedure for solving the

black hole attractor equations [4]. We treat τ as a fixed variable while solving (4.4)–(4.7),

then determine it at the very end by solving (4.8). The two sets of variables we have seen

so far,
{

CZI , LI , τ
}

and
{

mI
h,mI

f , eh
I , ef

I , τ
}

, describe two different ensembles. Following

OSV, we introduce a “mixed ensemble,”
{

mI
h,mI

f , φI
h, φI

f , τ
}

, where φI
h,f are potentials

conjugate to the electric fluxes. When introducing these potentials, we require that:

1. The expressions for CZI and LI in terms of
{

mI
h,mI

f , φI
h, φI

f , τ
}

automatically solve

the “magnetic” attractor equations, (4.4) and (4.5).

2. The potentials
{

φI
h, φI

f

}

transform like
{

mI
h,mI

f

}

under S-duality.

3. The relationship between
{

CZI , LI , τ
}

and
{

mI
h,mI

f , φI
h, φI

f , τ
}

is covariant under

S-duality.

These conditions determine the relationship between
{

CZI , LI , τ
}

and
{

mI
h,mI

f , φI
h, φI

f , τ
}

to be

CZI =
1

τ − τ

(

mI
f − τmI

h

)

+
1

τ − τ

(

φI
f − τφI

h

)

, (4.9)

LI = −
1

τ − τ

(

mI
f − τmI

h

)

+
1

τ − τ

(

φI
f − τφI

h

)

. (4.10)

We will also want to know how derivatives with respect to ZI and LI are mapped into

derivatives with respect to fluxes and the potentials. Here it is important to note that both

sets of variables we are considering,
{

CZI , LI , τ
}

and
{

mI
h,mI

f , φI
h, φI

f , τ
}

, include τ as an

independent variable. The derivatives are therefore related by

1

C

∂

∂ZI
=

1

2

[(

∂

∂mI
h

+ τ
∂

∂mI
f

)

+

(

∂

∂φI
h

+ τ
∂

∂φI
f

)]

, (4.11)

∂

∂LI
=

1

2

[(

∂

∂mI
h

+ τ
∂

∂mI
f

)

−

(

∂

∂φI
h

+ τ
∂

∂φI
f

)]

, (4.12)

where all derivatives are taken with τ held fixed.
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4.3 Electric attractor equations and the generating function

In the previous section we solved the magnetic attractor equations, (4.4) and (4.5). We

now introduce an auxiliary function,

V = 2Im (τ) CFIL
I , (4.13)

that simplifies the electric attractor equations, (4.6) and (4.7). This new function plays

a role analogous to that of the prepotential in the solution of the black hole attractor

equations. It enjoys the following properties:

1. Derivatives of V with respect to LI give CFI , one of the terms that appears in the

electric attractor equations:

1

2Im (τ)

∂V

∂LI
= CFI . (4.14)

2. Derivatives with respect to ZI give LJFIJ , the other term that appears in the electric

attractor equations:
1

2CIm (τ)

∂V

∂ZI
= LJFIJ . (4.15)

3. The factor of C in (4.13)makes V invariant under Kähler transformations.

4. By (2.27), (2.28), and (2.17), the factor of Im (τ) in (4.13) makes V invariant under

S-duality.

5. V is holomorphic in LI and ZI .

The first two properties will allow us to replace the FI and LJFIJ terms in the electric

attractor equations, (4.6) and (4.7), with derivatives of V. This is analogous to the role

played by the prepotential in the solution of the electric black hole equations. The in-

variance of V under Kähler transformations and S-duality (properties 3 and 4) will allow

us to interpret it in terms of a physical quantity. Finally, we will make extensive use of

holomorphy in the following manipulations.

As described above, we can rewrite the electric attractor equations (4.6) and (4.7) in

terms of derivatives of V,

eh
I =

1

2Im (τ)
Re

[

∂V

∂LI

∣

∣

∣

∣

ZJ ,LJ 6=I ,τ

+
1

C

∂V

∂ZI

∣

∣

∣

∣

ZJ 6=I ,LJ ,τ

]

, (4.16)

ef
I =

1

2Im (τ)
Re

[

τ
∂V

∂LI

∣

∣

∣

∣

ZJ ,LJ 6=I ,τ

+ τ
1

C

∂V

∂ZI

∣

∣

∣

∣

ZJ 6=I ,LJ ,τ

]

. (4.17)

We then use holomorphy of V to find

eh
I =

i

2Im (τ)

(

∂

∂LI
+

1

C
·

∂

∂ZI
−

∂

∂L
I
−

1

C

∂

∂Z
I

)

Im (V) , (4.18)

ef
I =

i

2Im (τ)

{

τ

(

∂

∂LI
−

1

C
·

∂

∂Z
I

)

− τ

(

∂

∂L
I
−

1

C

∂

∂ZI

)}

Im (V) . (4.19)
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Finally, we introduce derivatives with respect to the potentials using (4.11) and (4.12),

eh
I = −

[

∂

∂φI
f

Im (V)

]

φJ 6=I

h
,φJ

f
,mJ

h
,mJ

f
,τ

, (4.20)

ef
I =

[

∂

∂φI
h

Im (V)

]

φJ
h
,φJ 6=I

f
,mJ

h
,mJ

f
,τ

, (4.21)

Though we initially defined V in terms of LI and ZI , in this last step we simply substitute

in (4.9) and (4.10) to make it a function of the magnetic fluxes and electric potentials.

It is remarkable that the electric attractor equations, which appear rather complex,

reduce to derivatives of a single generating function! This is one of the principal results of

this paper.

Since we have made a rather long chain of substitutions and redefinitions, we briefly

summarize our procedure for solving the flux attractor equations:

1. Take as inputs the fluxes
{

mI
f ,mI

h, ef
I , eh

I

}

and the symplectic section
{

ZI , FI

}

.

2. Insert the expressions for the FI as functions of the ZI into (4.13), giving

V
(

LI , CZI , τ
)

.

3. Substitute the expressions (4.9) and (4.10) into V
(

LI , CZI , τ
)

to get

V
(

φI
h, φI

f ,mI
h,mI

f , τ
)

.

4. Invert (4.20) and (4.21) to get expressions for φI
f and φI

h in terms of mI
h, mI

f , eh
I , ef

I ,

and τ.

5. Rewrite the constraint (4.8) in terms of mI
h, mI

f , eh
I , ef

I , and τ. Do this by substitut-

ing (4.9) and (4.10) into (4.8), then inserting the solutions for φI
f and φI

h in terms of

mI
h, mI

f , eh
I , ef

I , and τ.

6. Solve the constraint (4.8) for τ as a function of the fluxes only. Substitute this back

into the expressions for φI
f,h to get expressions for the potentials in terms of the fluxes

only, and then insert τ and the potentials into the expressions (4.9) and (4.10) to get

expressions for CZI and LI in terms of the fluxes only.

The most difficult part of this procedure is step 4, which requires that we invert a system

of 2n + 2 equations. Even in simple cases, these result in polynomials of impractically

high order.

The electric attractor equations (4.20) and (4.21) take the form of thermodynamic

relations, indicating that the potentials φI
f,h are conjugate to the fluxes ef,h

I . This suggests

the Legendre transformation

G = Im (V) + eh
I φI

f − ef
I φI

h , (4.22)
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so that the electric attractor equations become

φI
h = −

[

∂G

∂ef
I

]

eh
J
,ef

J 6=I
,mJ

h
,mJ

f
,τ

, (4.23)

φI
f =

[

∂G

∂eh
I

]

eh
J 6=I

,ef
J
,mJ

h
,mJ

f
,τ

. (4.24)

This means that we only need to know a single function, G, which is in principle determined

by steps 1–4 above.

In practice, this may not be the best way to proceed. The analogue of G for the

black hole attractor equations is the entropy S, which can be computed by many different

methods. For example, the requirement that S be invariant under duality transformations

severely constrains, and sometimes completely determines, its functional form [31].

4.4 The constraint and the generating function

So far, we have demonstrated that the electric attractor equations (4.6) and (4.7) can be

recast in terms of derivatives of a generating function. Indeed, we designed the generating

function G specifically for this purpose. Next, we demonstrate a more surprising result: the

constraint (4.8) can also be written in terms of derivatives of the same generating function.

We first compute τ−derivatives of CZI and LI in the
{

mI
h,mI

f , φI
h, φI

f , τ
}

ensemble,

using (4.9) and (4.12):

∂ZI

∂τ

∣

∣

∣

∣

mI
h
,mI

f
,φI

h
,φI

f

= −
ZI

τ − τ
,

∂Z
I

∂τ

∣

∣

∣

∣

∣

mI
h
,mI

f
,φI

h
,φI

f

=
ZI

τ − τ
, (4.25)

∂LI

∂τ

∣

∣

∣

∣

mI
h
,mI

f
,φI

h
,φI

f

=
L

I

τ − τ
,

∂L
I

∂τ

∣

∣

∣

∣

∣

mI
h
,mI

f
,φI

h
,φI

f

= −
L

I

τ − τ
. (4.26)

Using these preliminary results, we find:

∂

∂τ
[Im (V)]m,φ =

∂

∂τ

[

2Im (τ) Im
(

LIFI

)]

m,φ
(4.27)

= −iIm
(

LIFI

)

− iIm (τ)

[

L
I

τ − τ
FI +

L
I

τ − τ
F I

]

−iIm (τ)

[

−LIFIJ
ZJ

τ − τ
− L

I
F IJ

ZJ

τ − τ

]

(4.28)

=
1

2

[

−LIFI − L
I
FI + LIFIJZJ + L

J
F IJZJ

]

(4.29)

= −
1

2
L

I [
FI − F IJZJ

]

, (4.30)

using the homogeneity property FIJZJ = FI . The last line is proportional to the complex

conjugate of the constraint (4.8). Setting ∂Im (V) /∂τ = 0 is thus equivalent to impos-

ing (4.8). Notice that the overall factor of Im (τ) included in V, originally introduced to
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make V invariant under S-duality, is exactly what is required to recover the constraint (4.8)

from ∂Im (V) /∂τ.

The Legendre transform that takes us from the
{

φI
h, φI

f ,mI
h,mI

f , τ
}

ensemble to the
{

eh
I , ef

I ,mI
h,mI

f , τ
}

ensemble does not change the equilibrium condition associated with τ.

In the latter ensemble, the constraint (4.8) is equivalent to

∂G

∂τ

∣

∣

∣

∣

eh
I
,ef

I
,mI

h
,mI

f

= 0. (4.31)

This completes our demonstration that the flux attractor equations can be interpreted as

equilibrium conditions for a thermodynamic system. From the thermodynamic point of

view, (4.30) indicates that τ is conjugate to the constraint (4.8).

While studying G in the
{

eh
I , ef

I ,mI
h,mI

f , τ
}

ensemble may be conceptually clearer,

there is a useful consequence of (4.31). Suppose we take derivatives of G without holding

τ fixed. The result is:

∂G

∂eh
I

∣

∣

∣

∣

eh
J 6=I

,ef
J
,mJ

h
,mJ

f

=
∂G

∂eh
I

∣

∣

∣

∣

eh
J 6=I

,ef
J
,mJ

h
,mJ

f
,τ

+
∂G

∂τ

∣

∣

∣

∣

eh
I
,ef

I
,mI

h
,mI

f

∂τ

∂eh
I

∣

∣

∣

∣

eh
J 6=I

,ef
J
,mJ

h
,mJ

f

(4.32)

=
∂G

∂eh
I

∣

∣

∣

∣

eh
J 6=I

,ef
J
,mJ

h
,mJ

f
,τ

. (4.33)

In other words, if we substitute the attractor value for τ into G we can simplify (4.23)

and (4.24) to:

φI
h = −

[

∂G

∂ef
I

]

eh
J
,ef

J 6=I
,mJ

h
,mJ

f

, (4.34)

φI
f =

[

∂G

∂eh
I

]

eh
J 6=I

,ef
J
,mJ

h
,mJ

f

. (4.35)

If one can determine G as a function of arbitrary fluxes, then (4.34) and (4.35) determine

the potentials φI
h,f , (4.9) and (4.10) then determine the moduli ZI and mass parameters LI ,

and finally (4.8) determines the axio-dilaton τ. In this way the single function G determines

the vacuum expectation values and masses of the moduli.

5 General properties of the generating function

The generating function G introduced in (4.22) is the function that controls the flux attrac-

tor, giving attractor values for scalars and other physical quantities upon differentiation.

In this section we initiate a general study of the generating function by demonstrating a

simple relationship between G and the gravitino mass:

G =

∫

F3 ∧ H3 − 2Vol2m2
3/2 . (5.1)

Note that the gravitino mass is to be considered a function of arbitrary fluxes. We first

introduce a condensed, complex notation for the fluxes and potentials. We then exploit

the homogeneity properties of G to prove the relationship (5.1).
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5.1 Complex fluxes and potentials

One of the results of section 4 is that we can solve the electric and magnetic attractor

equations (4.4)–(4.7) treating τ as a constant, then determine τ by solving (4.8). This

justifies the introduction of the following complex fluxes and potentials:

mI ≡ mI
f − τmI

h , (5.2)

eI ≡ ef
I − τeh

I , (5.3)

ϕI ≡ φI
f − τφI

h . (5.4)

We can then use (5.2) and (5.4) to rewrite (4.9) and (4.10) as

CZI =
1

2iIm (τ)

[

mI + ϕI
]

, (5.5)

LI =
1

2iIm (τ)

[

−mI + ϕI
]

. (5.6)

We also define derivatives with respect to the complex electric fluxes as

∂

∂eI
≡

i

2Im (τ)

(

∂

∂eh
I

+ τ
∂

∂ef
I

)

, (5.7)

where the normalization is chosen so that ∂eI/∂eJ = δJ
I . Definitions for ∂/∂mI and ∂/∂ϕI

are completely analogous. We can then rewrite the electric attractor equations (4.34)

and (4.35) as

ϕI = 2iIm (τ)
∂G

∂eI
, (5.8)

and the expressions for CZI and LI as

CZI =
1

2iIm (τ)

[

mI − 2iIm (τ)
∂

∂eI
G

]

, (5.9)

LI =
1

2iIm (τ)

[

−mI + 2iIm (τ)
∂

∂eI
G

]

. (5.10)

While (5.9) and (5.10) present a fairly compact version of the results of section (4),

they treat the electric and magnetic fluxes quite differently. The generating function G

is not homogeneous in either the electric or the magnetic fluxes alone, so a symplectic

invariant version of (5.9) and (5.10) will be helpful. We formulate this by first introducing

a new operator:

∂ ≡ αI
∂

∂eI
+ βI ∂

∂mI
, (5.11)

which maps scalar functions of the fluxes to 3-forms. We then examine (4.4)–(4.7), and see

that symplectic invariance requires

CΩ3 =
1

2iIm (τ)

[

G3 − 2iIm (τ) ∂G
]

, (5.12)

LI∂IΩ3 =
1

2iIm (τ)

[

−G3 + 2iIm (τ) ∂G
]

. (5.13)
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These are equivalent to the electric attractor equations, so they must be supplemented

by the constraint (4.8). This amounts to some flexibility in our treatment of G. We can

either use G
(

eI ,m
I , τ
)

and take all derivatives with τ held fixed, as in (4.23) and (4.24),

or substitute in the attractor value of τ to find G
(

eI ,m
I
)

and differentiate as in (4.34)

and (4.35).

5.2 General expression for the generating function

We now show that the relationship between the generating function G and the gravitino

mass (5.1) holds for general compactifications. Our argument turns on a homogeneity

property of the attractor equations that is evident from examining (4.4)–(4.8). These

attractor equations are invariant under a uniform rescaling of the fluxes,

mI
h,f → eλmI

h,f , (5.14)

eh,f
I → eλeh,f

I , (5.15)

provided that we simultaneously rescale

CZI → eλCZI , (5.16)

LI → eλLI . (5.17)

If we then turn our attention to the expressions for the CZI and LI in terms of fluxes and

potentials,(4.9) and (4.10), we see that the potentials must transform as

φI
h,f → eλφI

h,f . (5.18)

Equations (4.34) and (4.35) then indicate that if the potentials are to be homogeneous of

degree one in the fluxes, then G must be homogeneous of degree two in the fluxes. If we

use the complex fluxes introduced in (5.2) and (5.3), we find that G is homogeneous of

degree one in the complex fluxes and degree one in their conjugates. This homogeneity

implies that
∫

G3 ∧ ∂G =

[

mI ∂

∂mI
+ eI

∂

∂eI

]

G = G, (5.19)

where we used the orthogonality relations (2.1) and (2.2) and expansions (2.3) and (2.4)

to compute the integral. We will now use this result to compute the superpotential and

Kähler potential at the attractor point, and finally the gravitino mass.

We begin with the superpotential (2.18), then substitute in (5.12):

CW =

∫

G3 ∧ CΩ3 (5.20)

=
1

2iIm (τ)

[
∫

G3 ∧ G3 − 2iIm (τ)

∫

G3 ∧ ∂G

]

(5.21)

=

∫

F3 ∧ H3 − G. (5.22)
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In order to determine the Kähler potential we need to compute

|C|2
∫

Ω3 ∧ Ω3 =
1

4Im (τ)2

∫

(

G3 − 2iIm (τ) ∂G
)

∧
(

G3 + 2iIm (τ) ∂G
)

(5.23)

=
1

4Im (τ)2

[

−

∫

G3 ∧ G3 + 2iIm (τ)

(
∫

G3 ∧ ∂G +

∫

G3 ∧ ∂G

)

+4Im(τ)2
∫

∂G ∧ ∂G

]

(5.24)

= −
i

Im (τ)

[
∫

F3 ∧ H3 − G

]

. (5.25)

In the last step we used (5.19) and

4Im (τ)2
∫

∂G ∧ ∂G = −

∫

G3 ∧ G3 , (5.26)

which we prove as follows. LI∂IΩ3 contains only (3, 0) and (2, 1) pieces, so if we integrate

it against Ω3 the result must vanish:

0 =

∫

CΩ3 ∧ LI∂IΩ3 (5.27)

= −
1

4Im (τ)2

∫

(

G3 − 2iIm (τ) ∂G
)

∧
(

−G3 + 2iIm (τ) ∂G
)

(5.28)

= −
1

4Im (τ)2

[∫

G3 ∧ G3 + 2iIm (τ)

(∫

G3 ∧ ∂G −

∫

G3 ∧ ∂G

)

+4Im (τ)2
∫

∂G ∧ ∂G

]

(5.29)

= −
1

4Im (τ)2

[
∫

G3 ∧ G3 + 4Im (τ)2
∫

∂G ∧ ∂G

]

, (5.30)

which implies (5.26).

We now write out the gravitino mass (3.8) with the full Kähler potential (2.20):

Vol2m2
3/2 =

|CW |2

2iIm (τ) |C|2
∫

Ω3 ∧ Ω3

(5.31)

=
1

2

[
∫

F3 ∧ H3 − G

]

. (5.32)

Reorganizing this we find the generating function,

G =

∫

F3 ∧ H3 − 2Vol2m2
3/2 , (5.33)

as we wanted to show. We also point out a curious relationship:

Vol2m2
3/2 =

1

2
CW , (5.34)

where both quantities are evaluated at the attractor point. One could have imagined that

other duality-invariant quantities, e.g. eigenvalues of the mass matrix, would appear in one
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or more of these expressions, but they do not. We also point out that the combination

Vol2m2
3/2 is independent of the Kähler moduli, which cannot be stabilized by turning on

3-form fluxes.

As a side product of our derivation, we find another interesting identity. While one

combination of (5.12) and (5.13) gives (2.26), another combination appears more novel:

∂G =
1

2

[

LI∂IΩ3 − CΩ3

]

. (5.35)

The operator introduced in (5.11) is nilpotent,

∫

∂ ∧ ∂ =
∂

∂eI

∂

∂mI
−

∂

∂mI

∂

∂eI
= 0 , (5.36)

so we find that ∫

∂ ∧
[

LI∂IΩ3 − CΩ3

]

= 0 , (5.37)

in other words LI∂IΩ3 −CΩ3 is ∂−closed. Indeed, according to (5.35) it is ∂−exact. This

observation may motivate the introduction of the generating function G even in cases where

the FI are not globally well-defined.

6 An explicit solution of the attractor equations

In this section we find an explicit solution to the attractor equations for a

particular prepotential:

F =
Z1Z2Z3

Z0
. (6.1)

This prepotential appears frequently in the supergravity literature as the STU model [32–

35], while in the flux compactification literature it appears as the untwisted sector of a

T 6/Z
2×Z

2 ≈ T 2×T 2×T 2 orbifold [36, 37]. Because it is a truncation of N = 8 supergravity

it has a number of useful symmetries. On the other hand, it shares many features with

more generic prepotentials, and so is of broader interest than the pure N = 8 model.

We first write down the attractor equations explicitly for an arbitrary set of fluxes. For

a subset of all possible fluxes, we are able to solve the attractor equations, finding explicit

expressions for the complex structure moduli and τ. We then compute the generating

function G and the gravitino mass, and verify that the proposed relationship between

them (5.1) holds in this case. We conclude with a discussion of the U-duality group for this

model, and describe how to generalize the solution for our subset of fluxes to a solution for

general fluxes.

6.1 Symplectic section and electric attractor equations

In order to make the attractor equations (4.4)–(4.8) completely explicit, we need to specify

the symplectic section
{

ZI , FI

}

. In the present case the FI are just derivatives of the

prepotential (6.1):

FI =
∂F

∂ZI
, (6.2)
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with I = 0, 1, 2, 3. We substitute (6.2) into (4.13) to find the generating function in the

mixed ensemble:

V
(

mI , ϕI , τ
)

= 2Im (τ) C

[

−L0 Z1Z2Z3

(Z0)2
+ L1 Z2Z3

Z0
+ L2 Z3Z1

Z0
+ L3 Z1Z2

Z0

]

. (6.3)

=
1

2Im (τ)
(

m0 + ϕ0
)

{

−m0 + ϕ0

m0 + ϕ0

[

m1 + ϕ1
] [

m2 + ϕ2
] [

m3 + ϕ3
]

−
[

−m1 + ϕ1
] [

m2 + ϕ2
] [

m3 + ϕ3
]

−
[

m1 + ϕ1
] [

−m2 + ϕ2
] [

m3 + ϕ3
]

−
[

m1 + ϕ1
] [

m2 + ϕ2
] [

−m3 + ϕ3
]

}

. (6.4)

Since V is a function of magnetic charges and electric potentials, we substituted in (5.5)

and (5.6) for the ZI and LI . The electric attractor equations (4.20) and (4.21) require that

we differentiate6 Im (V):

e0 = −2iIm (τ)
∂

∂ϕ0

V − V

2i
(6.5)

= −
1

2
(

m0 + ϕ0
)2

[

m1 + ϕ1
] [

m2 + ϕ2
] [

m3 + ϕ3
]

−
1

2 (m0 + ϕ0)2

{

2
−m0 + ϕ0

m0 + ϕ0

[

m1 + ϕ1
] [

m2 + ϕ2
] [

m3 + ϕ3
]

−
[

−m1 + ϕ1
] [

m2 + ϕ2
] [

m3 + ϕ3
]

−
[

m1 + ϕ1
] [

−m2 + ϕ2
] [

m3 + ϕ3
]

−
[

m1 + ϕ1
] [

m2 + ϕ2
] [

−m3 + ϕ3
]

}

, (6.6)

e1 = −2iIm (τ)
∂

∂ϕ1

V − V

2i
(6.7)

=
1

2
(

m0 + ϕ0
)

[

m2 + ϕ2
] [

m3 + ϕ3
]

+
1

2 (m0 + ϕ0)

{

−m0 + ϕ0

m0 + ϕ0

[

m2 + ϕ2
] [

m3 + ϕ3
]

−
[

−m2 + ϕ2
] [

m3 + ϕ3
]

−
[

m2 + ϕ2
] [

−m3 + ϕ3
]

}

, (6.8)

where the ϕI−derivatives are defined analogous to eI−derivatives (5.7). The equations for

e2 and e3 are cyclic permutations of (6.8), so we have a system of four complex equations.

We also need to make the constraint (4.8) explicit. For the prepotential (6.1), it

6We could also have substituted our FI directly into the electric attractor equations (4.6) and (4.7), then

made the change of variables (4.9) and (4.10). This gives an identical result, indicating that our Im (V)

correctly generates the electric attractor equations.
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reduces to

0 = LIF I − LIFIJZ
J

(6.9)

= −L0 Z
1
Z

2
Z

3

(

Z
0
)2 +

[

L1 Z
2
Z

3

Z
0 + cyc.

]

− 2L0 Z1Z2Z3

(Z0)3
Z

0
+

[

L0 Z1Z2

(Z0)2
Z

3
+ cyc.

]

+

[

L1 Z2Z3

(Z0)2
Z

0
+ cyc.

]

−

[

L1 Z2

Z0
Z

3
+ L1 Z3

Z0
Z

2
+ cyc.

]

. (6.10)

After we substitute in (4.9) and (4.10) this expands out to

0 = −
(

−m0 + ϕ0
)

(

m1 + ϕ1
) (

m2 + ϕ2
) (

m3 + ϕ3
)

(m0 + ϕ0)2

+

[

(

−m1 + ϕ1
)

(

m2 + ϕ2
) (

m3 + ϕ3
)

m0 + ϕ0
+ cyc.

]

−2
(

−m0 + ϕ0
)

(

m1 + ϕ1
) (

m2 + ϕ2
) (

m3 + ϕ3
)

(

m0 + ϕ0
)3

(

m0 + ϕ0
)

+

[

(

−m0 + ϕ0
)

(

m1 + ϕ1
) (

m2 + ϕ2
)

(

m0 + ϕ0
)2

(

m3 + ϕ3
)

+ cyc.

]

+

[

(

−m1 + ϕ1
)

(

m2 + ϕ2
) (

m3 + ϕ3
)

(

m0 + ϕ0
)2

(

m0 + ϕ0
)

+ cyc.

]

(6.11)

−

[

(

−m1 + ϕ1
) m2 + ϕ2

m0 + ϕ0

(

m3 + ϕ3
)

+
(

−m1 + ϕ1
) m3 + ϕ3

m0 + ϕ0

(

m2 + ϕ2
)

+ cyc.

]

.

This appears to be another high-order polynomial equation in many variables.

We need to invert (6.6), (6.8), and (6.11) and find both the electric potentials ϕI

and τ as functions of the electric and magnetic fluxes. Doing this by brute force would

be quite challenging, as each equation is at least cubic in the potentials. Although we

have written the attractor equations in terms of complex potentials and fluxes they are

clearly not holomorphic in the potentials, so even counting the number of distinct solutions

(sometimes called “area codes” [26, 38–41]) for general fluxes appears difficult. In the

following we will find a solution to these equations using the ideas developed in section (4).

6.2 Reduction to eight fluxes

Much of the difficulty in solving (6.6), (6.8), and (6.11) arises from their dependence on

both mI , ϕI , and mI , ϕI . Things simplify quite a bit if we set m0
h = mi

f = ef
0 = eh

i = 0,

and make the ansatz that Re (τ) = φ0
h = φI

f = 0, so that the complex fluxes and potentials
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become:

m0 = m0
f , (6.12)

mi = −iIm (τ)mi
h , (6.13)

e0 = −iIm (τ) eh
0 , (6.14)

ei = ef
i , (6.15)

ϕ0 = φ0
f , (6.16)

ϕi = −iIm (τ)φi
h . (6.17)

This makes it easy to take the complex conjugate of a flux or potential: m0 = m0, ei = ei,

ϕ0 = ϕ0, mi = −mi, e0 = −e0, and ϕi = −ϕi.

If we apply these restrictions to (6.6), (6.8), and (6.11) we find:

e0 = −

(

m1 + ϕ1
) (

m2 + ϕ2
) (

m3 + ϕ3
)

2 (m0 + ϕ0)2

{

1 − 2
−m0 + ϕ0

m0 + ϕ0
−

−m1 + ϕ1

m1 + ϕ1

−
−m2 + ϕ2

m2 + ϕ2
−

−m3 + ϕ3

m3 + ϕ3

}

, (6.18)

e1 =

(

m2 + ϕ2
) (

m3 + ϕ3
)

2 (m0 + ϕ0)

{

1 +
−m0 + ϕ0

m0 + ϕ0
+

−m2 + ϕ2

m2 + ϕ2
+

−m3 + ϕ3

m3 + ϕ3

}

, (6.19)

0 =

(

m1 + ϕ1
) (

m2 + ϕ2
) (

m3 + ϕ3
)

2 (m0 + ϕ0)2

[

−m0 + ϕ0

m0 + ϕ0
+

−m1 + ϕ1

m1 + ϕ1

+
−m2 + ϕ2

m2 + ϕ2
+

−m3 + ϕ3

m3 + ϕ3

]

. (6.20)

Note that the same prefactor appears in (6.18) and (6.20). So long as e0 6= 0, we conclude

that the factor in square brackets in (6.20) must vanish. We can apply this to (6.18)

and (6.19) to arrive at a simpler set of equations:

e0 = −

(

m1 + ϕ1
) (

m2 + ϕ2
) (

m3 + ϕ3
)

(m0 + ϕ0)3
m0 , (6.21)

e1 =

(

m2 + ϕ2
) (

m3 + ϕ3
)

(m0 + ϕ0) (m1 + ϕ1)
m1 , (6.22)

0 =
−m0 + ϕ0

m0 + ϕ0
+

−m1 + ϕ1

m1 + ϕ1
+

−m2 + ϕ2

m2 + ϕ2
+

−m3 + ϕ3

m3 + ϕ3
. (6.23)

As usual, expressions for e2 and e3 arise from cyclic permutations of (6.22). In the next

section we will explicitly invert these equations.

6.3 Moduli, potentials, and mass parameters (reduced fluxes)

We begin by solving for the physical complex structure moduli,

zi ≡
Zi

Z0
=

mi + ϕi

m0 + ϕ0 = −
mi + ϕi

m0 + ϕ0
. (6.24)
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The ratio of (6.21) and (6.22) can be solved for the zi :

ei

e0
= −

(

m0 + ϕ0

mi + ϕi

)2
mi

m0
= −

1

(zi)2
mi

m0
. (6.25)

In order to avoid awkward branch cuts when we take the square root, we will carefully

analyze the signs on the charges. If we insert the real charges and potentials into the

previous expression,

ef
i

eh
0

= −
mi

h

m0
f

(

m0
f + φ0

f

mi
h + φi

h

)2

, (6.26)

we find that ef
i m0

f/eh
0mi

h < 0, and thus that eim
0/e0m

i > 0. We must also consider the

Kähler potential (2.8) with the prepotential (6.1). Evaluating it, we find

Kz = − log
∣

∣Z0
∣

∣

2
− log

[

−8Im
(

z1
)

Im
(

z2
)

Im
(

z3
)]

. (6.27)

The condition that the volume of each of the underlying T 2’s is positive requires Im
(

zi
)

< 0,

which in turn implies that Kz is real. This determines the expression for the modulus:

zi = −i

√

e0mi

m0ei
= −iIm (τ)

√

√

√

√−
eh
0mi

h

m0
fef

i

. (6.28)

In order to make this completely explicit we must solve for Im (τ) , so we will do that next.

We can use (6.28) to simplify (6.21):

e0 = z1z2z3m0 = i

√

(e0)
3 m1m2m3

(m0)3 e1e2e3

m0 . (6.29)

All dependence on the potentials has been eliminated, so this is a single equation that

determines Im (τ) . Substituting in real quantities, we find

1 = −sgn
(

m0
feh

0

)

√

√

√

√−Im (τ)4
eh
0m1

hm2
hm3

h

m0
fef

1ef
2ef

3

. (6.30)

Note that the sgn
(

m0
feh

0

)

appeared when we pulled the factor of m0
f/eh

0 under the square

root. We now find that

Im (τ) =

(

−
m0

fef
1ef

2ef
3

eh
0m1

hm2
hm3

h

)1/4

, (6.31)

where the physical condition Im (τ) = e−φ dictates that we use the real, positive branch,

and implies that Kτ (2.20) is real.7

7It is somewhat awkward that our Kähler potential requires Im (τ ) > 0 but Im
`

zi
´

< 0, especially if

we want to consider this model as a compactification of F-theory. On the other hand, our conventions are

self-consistent, and chosen to agree with the bulk of the literature on flux compactifications.
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Equation (6.30) also implies that sgn
(

m0
feh

0

)

= −1. We can combine this with our

earlier result that sgn
(

m0
feh

0mi
hef

i

)

= −1 to find a complete set of sign restrictions:

− sgn
(

m0
feh

0

)

= sgn
(

m1
hef

1

)

= sgn
(

m2
hef

2

)

= sgn
(

m3
hef

3

)

= +1. (6.32)

Only 1/16 of the possible fluxes satisfy the physical conditions we have imposed. It is

interesting to consider what might happen if we relaxed these sign restrictions. Suppose

we chose signs that violated some of the conditions in (6.32), but satisfied the product of

those conditions. The Kähler potential (2.20) would still be real, so we would still have

solutions to the ISD condition, at least formally. The caveat is that the complex structures

of some of the T 2’s would no longer be in the upper half-plane and/or the sign of the

string coupling would be negative. At a minimum, then, we would have to give up the

conventional geometrical interpretation of the moduli. Going even further, we can consider

signs such that the product of the conditions in (6.32) are violated. Then the Kähler

potential (2.20) would not be real and it is not clear that the proposed solution would, in

fact, be a solution. Indeed, for such flux assignments there may not be any solutions to the

ISD conditions at all. In the following we will analyze only the clearly physical solutions

that satisfy (6.32).

We can compare our restrictions with a more familiar one [12]. If we assume that the

attractor equations can be satisfied, i.e. (2.26), then

∫

F3 ∧ H3 =
1

2iIm (τ)

∫

G3 ∧ G3 (6.33)

=
e−Kz

2Im (τ)

[

|C|2 +
∣

∣Ci
∣

∣

2
]

, (6.34)

and thus
∫

F3 ∧ H3 is positive. The sign restrictions (6.32) are consistent with this, but

stronger. If we evaluate
∫

F3 ∧ H3 for our reduced fluxes,

∫

F3 ∧ H3 = −eh
0m0

f + ef
i mi

h , (6.35)

we see that the sign restrictions require that each term be positive.

Having determined Im (τ) and the sign restrictions on the various fluxes, (6.28) gives

explicit expressions for the complex structure moduli:

z1 = −i

[(

−
eh
0

m0
f

)(

m1
h

ef
1

)(

ef
2

m2
h

)(

ef
3

m3
h

)]1/4

, (6.36)

and cyclic permutations. These explicit expressions for the physical moduli, along with the

dilaton (6.31) and the restrictions on the fluxes (6.32), are some of the principal results of

this example.

Up to this point we have solved for the moduli and derived a set of restrictions on the

fluxes, but we haven’t yet solved for the potentials. The only equation that we haven’t

– 27 –



J
H
E
P
0
7
(
2
0
0
9
)
0
4
9

solved is the constraint (6.23), so let’s turn our attention there. We can rewrite that

equation as

m0 + ϕ0 =
m0

2

{

1 +
m1

m0

m0 + ϕ0

m1 + ϕ1
+

m2

m0

m0 + ϕ0

m2 + ϕ2
+

m3

m0

m0 + ϕ0

m3 + ϕ3

}

. (6.37)

Combining (6.24) and (6.28), we find

m0 + ϕ0 =
m0

2







1 − i
m1

m0

√

m0e1

e0m1
− i

m2

m0

√

m0e2

e0m2
− i

m3

m0

√

m0e3

e0m3







. (6.38)

We now rewrite this in terms of real quantities:

φ0
f =

m0
f

2







−1−sgn
(

m0
fm1

h

)

√

√

√

√−
m1

hef
1

eh
0m0

f

−sgn
(

m0
fm2

h

)

√

√

√

√−
m2

hef
2

eh
0m0

f

−sgn
(

m0
fm3

h

)

√

√

√

√−
m3

hef
3

eh
0m0

f







.

(6.39)

If we again use the relation between m0 + ϕ0 and m1 + ϕ1, (6.24), we find the following

expression for φ1
h :

φ1
h =

m1
h

2







−1 − sgn
(

m1
hm0

f

)

√

√

√

√−
m0

feh
0

m1
hef

1

+ sgn
(

m1
hm2

h

)

√

√

√

√

m2
hef

2

m1
hef

1

+ sgn
(

m1
hm3

h

)

√

√

√

√

m3
hef

3

m1
hef

1







.

(6.40)

This completes our inversion of (6.21), (6.22), and (6.23).

We emphasized earlier in this paper that the attractor equations include the mass

parameters Ci on equal terms with the moduli zi. With (6.39) and (6.40) in hand, it is

straightforward to compute the Ci. We first insert our zi = Zi/Z0 into (4.3) to make the

relationship between the Ci and LI explicit:

CiZ0 = −ziL0 + Li . (6.41)

Note that the combination CiZ0 is Kähler-invariant, while Ci alone is not. If we substi-

tute (4.10) and (6.28) into (6.41), we find

C1Z0 =

√

√

√

√−
eh
0m1

h

m0
fef

1

1

2

(

−m0
f + φ0

f

)

−
1

2

(

−m1
h + φ1

h

)

(6.42)

=
1

2



sgn
(

m0
fm1

h

) m1
h

m0
f

√

√

√

√−
m0

feh
0

m1
hef

1

(

−m0
f + φ0

f

)

−
(

−m1
h + φ1

h

)



 (6.43)

=
m1

h

4
sgn

(

m0
fm1

h

)

√

√

√

√−
m0

feh
0

m1
hef

1



−3 −
3
∑

i=1

sgn
(

m0
fmi

h

)

√

√

√

√−
mi

hef
i

eh
0m0

f





−
m1

h

4



−3−sgn
(

m1
hm0

f

)

√

√

√

√−
m0

feh
0

m1
hef

1

+sgn
(

m1
hm2

h

)

√

√

√

√

m2
hef

2

m1
hef

1

+sgn
(

m1
hm3

h

)

√

√

√

√

m3
hef

3

m1
hef

1




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=
m1

h

4



−3sgn
(

m0
fm1

h

)

√

√

√

√−
m0

feh
0

m1
hef

1

− 1 − sgn
(

m1
hm2

h

)

√

√

√

√

m2
hef

2

m1
hef

1

− sgn
(

m1
hm3

h

)

√

√

√

√

m3
hef

3

m1
hef

1





−
m1

h

4



−3 − sgn
(

m1
hm0

f

)

√

√

√

√−
m0

feh
0

m1
hef

1

+ sgn
(

m1
hm2

h

)

√

√

√

√

m2
hef

2

m1
hef

1

+ sgn
(

m1
hm3

h

)

√

√

√

√

m3
hef

3

m1
hef

1





=
m1

h

2



1−sgn
(

m0
fm1

h

)

√

√

√

√−
m0

feh
0

m1
hef

1

−sgn
(

m1
hm2

h

)

√

√

√

√

m2
hef

2

m1
hef

1

−sgn
(

m1
hm3

h

)

√

√

√

√

m3
hef

3

m1
hef

1



 . (6.44)

If one wishes to compute the fermion and scalar mass matrices explicitly, these expressions

can be substituted into (3.22), (3.24), and (3.25).

6.4 Generating functions (reduced fluxes)

One of the principal results of this paper is that the attractor behavior of these flux com-

pactifications is governed by a single function G. In this section we compute this function

for our reduced fluxes. We will then verify the simple relationship between G and the

gravitino mass.

We begin with Im (V) . If we substitute our FI into (4.13), we find

Im (V) = 2Im (τ) Im

{

C
Z1Z2Z3

Z0

[

−
L0

Z0
+

L1

Z1
+

L2

Z2
+

L3

Z3

]}

(6.45)

= 2Im (τ) Im

{

−C2 Z1Z2Z3

Z0

[

−m0 + ϕ0

m0 + ϕ0
+

−m1 + ϕ1

m1 + ϕ1

+
−m2 + ϕ2

m2 + ϕ2
+

−m3 + ϕ3

m3 + ϕ3

]}

. (6.46)

The term in square brackets is just the constraint (6.23) so Im (V) = 0. If we substitute

this into (4.22), we find for our reduced fluxes

G = eh
0φ0

f − ef
i φi

h . (6.47)

We compute each term separately:

eh
0φ0

f =
1

2

{

−eh
0m0

f + sgn
(

m0
fm1

h

)

√

−eh
0m0

f

√

m1
hef

1

+sgn
(

m0
fm2

h

)

√

−eh
0m0

f

√

m2
hef

2 + sgn
(

m0
fm3

h

)

√

−eh
0m0

f

√

m3
hef

3

}

, (6.48)

ef
1φ1

h =
1

2

{

−ef
1m1

h − sgn
(

m0
fm1

h

)

√

−eh
0m0

f

√

m1
hef

1

+sgn
(

m1
hm2

h

)

√

m1
hef

1

√

m2
hef

2 + sgn
(

m1
hm3

h

)

√

m1
hef

1

√

m3
hef

3

}

. (6.49)
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Putting this together yields

G =
1

2

[

−eh
0m0

f + ef
i mi

h

]

+ sgn
(

m0
fm1

h

)

√

−eh
0m0

f

√

m1
hef

1 + sgn
(

m0
fm2

h

)

√

−eh
0m0

f

√

m2
hef

2

+sgn
(

m0
fm3

h

)

√

−eh
0m0

f

√

m3
hef

3 − sgn
(

m1
hm2

h

)

√

m1
hef

1

√

m2
hef

2

−sgn
(

m1
hm3

h

)

√

m1
hef

1

√

m3
hef

3 − sgn
(

m2
hm3

h

)

√

m2
hef

2

√

m3
hef

3 . (6.50)

The term in square brackets is just
∫

F3 ∧ H3 (6.35), while the remainder is less familiar.

It is precisely what is required so that ∂G/∂eh
0 = φ0

f and ∂G/∂ef
i = −φi

h, as can be readily

verified. It is also closely related to the gravitino mass, as we will now see.

In order to compute the gravitino mass we substitute (6.27), (6.31), (6.36), and (6.39)

into (3.9) and simplify

Vol2m2
3/2 = −

8Im (τ) Im
(

z1
)

Im
(

z2
)

Im
(

z3
)

2

(

1

2Im (τ)

)2
(

m0
f + φ0

f

)2
(6.51)

= −
eh
0m0

f

4







1 − sgn
(

m0
fm1

h

)

√

√

√

√−
m1

hef
1

eh
0m0

f

− sgn
(

m0
fm2

h

)

√

√

√

√−
m2

hef
2

eh
0m0

f

−sgn
(

m0
fm3

h

)

√

√

√

√−
m3

hef
3

eh
0m0

f







2

(6.52)

=
1

2

{

1

2

[

−eh
0m0

f + ef
i mi

h

]

− sgn
(

m0
fm1

h

)

√

−eh
0m0

f

√

m1
hef

1

−sgn
(

m0
fm2

h

)

√

−eh
0m0

f

√

m2
hef

2 − sgn
(

m0
fm3

h

)

√

−eh
0m0

f

√

m3
hef

3

+sgn
(

m1
hm2

h

)

√

m1
hef

1

√

m2
hef

2 + sgn
(

m1
hm3

h

)

√

m1
hef

1

√

m3
hef

3

+sgn
(

m2
hm3

h

)

√

m2
hef

2

√

m3
hef

3

}

, (6.53)

If we compare this with our expression for G (6.50), we see that they are related by

G =

∫

F3 ∧ H3 − 2Vol2m2
3/2 , (6.54)

in accord with the general relationship (5.1).

6.5 U−invariants for F = Z1Z2Z3/Z0

The model we are considering enjoys a large set of duality symmetries. We have not

made explicit use of these dualities so far, but in this section we will show how they may

be used to generalize our solution with only eight fluxes to a solution for the full set of

sixteen fluxes. We take inspiration here from the STU black hole, where consideration of

duality-invariant combinations of the black hole charges led to a simple expression for the

generating function of the potentials [31, 33].

One part of the duality group is easily identified if we think of our prepotential as

arising from compactification on T 2 × T 2 × T 2. We can interpret each zi as the modular
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parameter of the ith torus, and consider modular transformations on each torus. Since

the tori and their associated modular transformations factorize, their contribution to the

U-duality group is just SL (2)3 . This is the symmetry group of the STU black hole [33],

whose charges transform8 in the (2, 2, 2) of SL (2)3 .

IIB theories also enjoy an SL (2) S-duality, independent of the SL (2)3 that we have

already discussed. This does not factor into discussions of the STU black hole in the IIB

picture,9 as the D3-branes that one uses to construct the black hole (see section (3.1)) are

invariant under S-duality. The fluxes H3 and F3, however, transform under S-duality, so

we must consider the larger duality group SL (2)4 , under which our fluxes transform as

(2, 2, 2, 2) .

The discussion of STU black holes in terms of SL (2)3 invariants is relatively straight-

forward because there is a single SL (2)3-invariant that one can construct from the

charges [31]. This essentially determines the black hole entropy, which in turn is the

generating function for the electric and magnetic potentials. On the other hand, one can

construct four invariants10 from the (2, 2, 2, 2) of SL (2)4 [43]. The quadratic I2 =
∫

F3∧H3

appears in most studies of IIB flux compactifications, while the other three are less familiar.

Considered as polynomials in the fluxes, there are also two quartics, I
(1)
4 and I

(2)
4 , and a

sextic, I6.

In section 6.2 we chose a reduced set of fluxes that allowed us to explicitly solve the

attractor equations. One of our motivations in choosing these particular fluxes was to

choose a combination that left all four SL (2)4 invariants non-zero and independent. While

the general expressions for these invariants are quite complicated (see [43] for details), they

simplify considerably for our reduced fluxes:

I2 =

∫

F3 ∧ H3 =
(

−m0
feh

0

)

+
(

ef
1m1

h

)

+
(

ef
2m2

h

)

+
(

ef
3m3

h

)

, (6.55)

I
(1)
4 =−

(

−m0
feh

0

)(

ef
1m1

h

)

+
(

−m0
feh

0

)(

ef
2m2

h

)

+
(

ef
1m1

h

)(

ef
3m3

h

)

−
(

ef
2m2

h

)(

ef
3m3

h

)

,

(6.56)

I
(2)
4 =−

(

−m0
feh

0

)(

ef
2m2

h

)

+
(

−m0
feh

0

)(

ef
3m3

h

)

+
(

ef
1m1

h

)(

ef
2m2

h

)

−
(

ef
1m1

h

)(

ef
3m3

h

)

,

(6.57)

I6 =
(

−m0
feh

0

)2 (

ef
1m1

h

)

+
(

−m0
feh

0

)(

ef
1m1

h

)2
+
(

ef
2m2

h

)2 (

ef
3m3

h

)

+
(

ef
2m2

h

)(

ef
3m3

h

)2

−4
(

ef
1m1

h

)2 (

ef
2m2

h

)

−4
(

ef
1m1

h

)(

ef
2m2

h

)2
−4
(

−m0
feh

0

)2 (

ef
3m3

h

)

−4
(

−m0
feh

0

)(

ef
3m3

h

)2
+3
(

−m0
feh

0

)(

ef
1m1

h

)(

ef
2m2

h

)

+3
(

−m0
feh

0

)(

ef
1m1

h

)(

ef
3m3

h

)

+3
(

−m0
feh

0

)(

ef
2m2

h

)(

ef
3m3

h

)

+3
(

ef
1m1

h

)(

ef
2m2

h

)(

ef
3m3

h

)

. (6.58)

8For details of the action of SL (2)3 on the charges, see e.g. [42].
9One can also discuss this entirely in the language of N = 2 supergravity. In the STU black hole all

of the hypermultiplets, including the universal hypermultiplet, decouple from the attractor flow. On the

other hand the axio-dilaton, which descends from the universal hypermultiplet, does not decouple from the

flux attractor.
10More precisely, one can construct exactly four invariants from the (2, 2, 2, 2) of SL (2, C)4 . These are

also invariants of SL (2, R)4 but additional invariants might arise when we restrict to the subgroup. Possible

examples include sgn
`

m0

fmi
h

´

. We also expect some number of discrete invariants to appear upon further

restriction to SL (2, Z)4 .
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Note that given the sign restrictions in (6.32), each term in parentheses is positive-definite.

Also, note that exactly four distinct products of pairs of fluxes appear in the expressions

for the invariants. Duality orbits of our reduced fluxes therefore sweep out a codimension 0

volume in the full space of fluxes. It is more difficult to say whether pairs of fluxes satisfying

the sign constraints (6.32) span the physically allowed values of the invariants (6.55)–(6.58).

The explicit form (6.50) of the generating function G raises an interesting question.

Three independent signs appear, sgn
(

m0
fm1

h

)

, sgn
(

m0
fm2

h

)

, and sgn
(

m0
fm3

h

)

. One can

readily verify that duality transformations that leave the subspace of reduced fluxes in-

variant also leave these signs, and only these signs, invariant. Although we are not certain

that these signs lift to invariants of the full SL (2)4 , it is possible that they label different

octants of the full space of fluxes, with distinct expressions for e.g. the gravitino mass in

each octant.

We can use these facts to generalize our solution of the F = Z1Z2Z3/Z0 model with

eight fluxes to a solution with all sixteen fluxes. We propose the following procedure:

1. Consider (6.55)–(6.58) to be a set of implicit functions for each pair of fluxes in terms

of I2 =
∫

F3 ∧ H3, I
(1,2)
4 , and I6.

2. Substitute these functions into (6.50) to get G as a function of the invariants.

3. Substitute the full expressions for I2 =
∫

F3 ∧ H3, I
(1,2)
4 , and I6 into G to get an

expression for G as a function of general fluxes.

4. Derivatives of G with respect to the fluxes will then give the potentials, and in turn

the values of the complex structure moduli and mass parameters.

5. Solve (4.8) to determine the value of τ.

This procedure will certainly work if the eight additional fluxes are small. As they become

large, global properties of the space of fluxes may present an obstruction, for example one

of sgn
(

m0
fm1

h

)

, sgn
(

m0
fm2

h

)

, or sgn
(

m0
fm3

h

)

might effectively flip. It is also possible

that there are other branches of solutions that we have not identified.

Though considerations of duality-invariance have not yet led us to a complete solution

of the flux attractor equations with F = Z1Z2Z3/Z0, we hope that future work will make

our understanding of flux compactifications on this geometry as detailed as the modern

understanding of the STU black hole.

7 Thermodynamics, stability, and the landscape

One of the goals of this paper was to determine how much of the analysis of flux com-

pactifications could be done directly on the space of input fluxes. We demonstrated that

local properties of the compactification are completely determined by a single generating

function G defined on the space of fluxes. Although we have been conservative in describing

G as a “generating function,” we hope that future analysis will reveal that it is a proper

thermodynamic function, and that we can think of the fluxes themselves as the parameters
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of an underlying thermodynamic system. At the same time, we might worry that our suc-

cess in constructing G hinged only on the Kähler structure of the moduli space, and that

no thermodynamic interpretation exists. We now outline some of the principal challenges

surrounding a thermodynamic interpretation of flux attractors.

Is G a Thermodynamic Function? Equations (4.34) and (4.35) look like equilibrium

relations between the fluxes and their thermodynamic conjugates. In addition to

equilibrium relations, thermodynamic functions also obey a set of stability condi-

tions. For a sensible thermodynamic interpretation, we would require that stable

and unstable thermodynamic equilibria correspond to stable and unstable minima

of the traditional spacetime potential (2.22). Here we find an apparent mismatch

between the two Hessians. While the field-theoretic mass matrix has 2n+2 eigenval-

ues, the matrix of second derivatives of G has 4n + 4 eigenvalues. For guidance we

might study the analogous issue in the black hole attractor. There, the Hessian of

the effective potential has 2n eigenvalues, while the second derivatives of the entropy

lead to 2n + 2 eigenvalues.

What Kind of Thermodynamic Function is G? In thermodynamic problems, the en-

ergy and the entropy are treated rather differently. In particular, energies are min-

imized at stable equilibria, while entropies are maximized. In other ensembles the

energy is mapped to a free energy and the entropy to a generalized Massieu function,

but free energies are still minimized and Massieu functions are still maximized. The

interpretation of G hinges on whether it is minimized, in which case it might be in-

terpreted as the tension of a dual domain wall [44], or maximized, in which case it

could be interpreted as an entropy. Determining this requires that we fix the overall

sign of G. Doing this might be as simple as requiring that G be positive for stable

configurations, but it could be more subtle.

What Does This Imply for the Landscape? If we can establish that G is an entropy,

it becomes quite natural to propose eG as a classical measure on the string theory

landscape. Presumably such a measure would be related to the number of microscopic

realizations of a given set of fluxes. We can go on to ask if there are any geometries

for which this measure becomes strongly peaked, or whether consistency conditions

(such as the tadpole constraint) require that G be O (1) .

Clearly many potential obstacles lie between the generating function introduced in this

paper and a predictive measure on the landscape. However the prospect of such a measure

is quite exciting, and so worthy of some attention.
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A Scalar mass matrix in no-scale compactifications

In this appendix we present an explicit computation of the scalar mass matrix for no-

scale compactifications.

We divide the scalar potential into two terms as follows:

Vtot = V + V0 (A.1)

= eKgαβDαWDβW + eK
(

gabDaWDbW − 3 |W |2
)

. (A.2)

The indices α, β, γ . . . run over the complex structure moduli i, j, k . . . and axio-dilaton τ,

and a, b, . . . run over the Kähler moduli. Because the superpotential is independent of the

Kähler moduli, their F-terms are (2.21)

DaW = W∂aK . (A.3)

The inverse metric is such that

gab∂aK∂bK = 3 , (A.4)

so that V0 = 0. The remaining term V is positive semi-definite, so the absolute minima of

the scalar potential all have vanishing cosmological constant. This is why these solutions

are called “no-scale.”

Since V0 = 0, we do not expect this term to make a contribution to the mass matrix.

We now show explicitly that this is the case, beginning with the contribution to M2
αβ from

V0 :

∂β∂αV0 = ∂β

{

eK
[

gab
(

DαDaWDbW + DaWDαDbW
)

+ DaWDbW∂αgab
]

− 3WDαW
}

= eK
[

gab
(

DβDαDaWDbW + DαDaWDβDbW
)

+
(

∂βgab
)

DαDaWDbW

+gab
(

DβDaWDβDbW + DaWDβDαDbW
)

+
(

∂βgab
)

DaWDαDbW

+ ∂αgab
(

DβDaWDbW + DaWDβDbW
)

+ DaWDbW∂β∂αgab − 3WDβDαW
]

.

Since the Kähler potential factorizes into K = Kz

(

zi, zi
)

+ Kτ (τ, τ ) + Kt

(

ta, t
a
)

we find

that ∂αgab = 0, and simplify further:

∂β∂αV0 = eK
[

gab
(

DβDαDaWDbW + DαDaWDβDbW
)

+ gab
(

DβDaWDβDbW + DaWDβDαDbW
)

− 3WDβDαW
]

. (A.5)

Since ∂α∂aK = 0, we have

DαDaW = Dα (W∂aK) (A.6)

= (DαW ) ∂aK (A.7)
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and

DαDbW = Dα

(

W∂bK
)

(A.8)

= 0 . (A.9)

This, combined with (A.4), gives

∂β∂αV0 = eK
[(

gab∂aK∂bK
)

WDβDαW − 3WDβDαW
]

(A.10)

= 0 , (A.11)

so V0 indeed makes no contribution to M2
αβ .

The contributions to M2
αβ

from V0 simplify in a similar way:

∂β∂αV0 = ∂β

{

eK
[

gab
(

DαDaWDbW + DaWDαDbW
)

+ DaWDbW∂αgab
]

− 3WDαW
}

= eK
[

gab
(

DβDαDaWDbW + DαDaWDβDbW
)

−3
(

WDβDαW + DαWDβW
)]

(A.12)

= 0 . (A.13)

So our expectations were correct, and V0 makes no contribution to the scalar mass matrix.

We emphasize that in computing the contributions from V0 to the mass matrix we

have not set DαW = 0, we have only used the factorization of the Kähler potential.

Our conclusion that V0 makes no contribution to the scalar mass matrix thus holds for

metastable local minima, where DαW 6= 0, as well as absolute minima, where DαW = 0.

Next we compute the contributions to the mass matrix from V. Since we are interested

in absolute minima of the potential, we will set DαW = 0. We begin with contributions

to M2
αβ :

∂β∂αV = ∂β

{

eK
[

gγδ
(

DαDγWDδW + DγWDαDδW
)

+ DγWDδW∂αgγδ
]}

= eKgγδ
(

DαDγWDβDδW + DβDγWDαDδW
)

(A.14)

We can eliminate the mixed derivatives using

DαDβW = Dα

(

∂βW + W∂βK
)

(A.15)

= W∂α∂βK (A.16)

= Wgαβ , (A.17)

so that (A.14) simplifies to

M2
αβ = ∂β∂αV = eKgγδ

[

DαDγWDβDδW + DβDγWDαDδW
]

(A.18)

= eKW (DαDβW + DβDαW ) . (A.19)
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We’ll follow the same procedure for M2
αβ

,

M2
αβ

= ∂β∂αV = ∂β

{

eK
[

gγδ
(

DαDγWDδW + DγWDαDδW
)

+ DγWDδW∂αgγδ
]}

= eKgγδ
[

DαDγWDβDδW + DβDγWDαDδW
]

= eK
[

gγδDαDγWDβDδW + |W |2 gαβ

]

. (A.20)

Our results for the scalar mass matrices, (A.19) and (A.20), agree with the standard results

for N = 1 supergravity, e.g. eq. 23.27 in [30]. We have verified that the Kähler moduli do

not make any additional contributions.

We also see that when W 6= 0, i.e. when SUSY is broken, the scalar masses-squared

are lifted above the fermion masses-squared by O
(

m2
3/2

)

.

References

[1] R. Kallosh, New attractors, JHEP 12 (2005) 022 [hep-th/0510024] [SPIRES].

[2] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux,

JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

[3] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

[4] H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string,

Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [SPIRES].

[5] K. Becker, M. Becker, C. Vafa and J. Walcher, Moduli stabilization in non-geometric

backgrounds, Nucl. Phys. B 770 (2007) 1 [hep-th/0611001] [SPIRES].

[6] A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of N = 2 supergravity and

its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [SPIRES].

[7] P. Candelas and X. de la Ossa, Moduli space of calabi-yau manifolds,

Nucl. Phys. B 355 (1991) 455 [SPIRES].

[8] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds,

Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [SPIRES].

[9] T.R. Taylor and C. Vafa, RR flux on Calabi-Yau and partial supersymmetry breaking,

Phys. Lett. B 474 (2000) 130 [hep-th/9912152] [SPIRES].

[10] E. Silverstein, TASI/PiTP/ISS lectures on moduli and microphysics, hep-th/0405068

[SPIRES].

[11] M. Graña, Flux compactifications in string theory: a comprehensive review,

Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

[12] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [SPIRES].

[13] F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [SPIRES].

[14] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory,

Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

– 36 –

http://dx.doi.org/10.1088/1126-6708/2005/12/022
http://arxiv.org/abs/hep-th/0510024
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0510024
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://arxiv.org/abs/hep-th/9908088
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908088
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://arxiv.org/abs/hep-th/0105097
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0105097
http://dx.doi.org/10.1103/PhysRevD.70.106007
http://arxiv.org/abs/hep-th/0405146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405146
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.034
http://arxiv.org/abs/hep-th/0611001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0611001
http://dx.doi.org/10.1016/0920-5632(96)00008-4
http://arxiv.org/abs/hep-th/9509160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9509160
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B355,455
http://dx.doi.org/10.1016/S0550-3213(00)00373-4
http://arxiv.org/abs/hep-th/9906070
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9906070
http://dx.doi.org/10.1016/S0370-2693(00)00005-8
http://arxiv.org/abs/hep-th/9912152
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912152
http://arxiv.org/abs/hep-th/0405068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405068
http://dx.doi.org/10.1016/j.physrep.2005.10.008
http://arxiv.org/abs/hep-th/0509003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0509003
http://dx.doi.org/10.1103/RevModPhys.79.733
http://arxiv.org/abs/hep-th/0610102
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610102
http://arxiv.org/abs/0803.1194
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.1194
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arxiv.org/abs/hep-th/0301240
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0301240


J
H
E
P
0
7
(
2
0
0
9
)
0
4
9

[15] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[SPIRES].

[16] M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume

compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [SPIRES].

[17] A.R. Frey and J. Polchinski, N = 3 warped compactifications,

Phys. Rev. D 65 (2002) 126009 [hep-th/0201029] [SPIRES].

[18] O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane

worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].

[19] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the

warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

[20] A.R. Frey and A. Maharana, Warped spectroscopy: localization of frozen bulk modes,

JHEP 08 (2006) 021 [hep-th/0603233] [SPIRES].

[21] G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux

compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].

[22] A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in

warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].

[23] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes,

Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].

[24] A. Strominger, Macroscopic entropy of N = 2 extremal black holes,

Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].

[25] S. Ferrara and R. Kallosh, Universality of supersymmetric attractors,

Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [SPIRES].

[26] G.W. Moore, Arithmetic and attractors, hep-th/9807087 [SPIRES].

[27] A. Sen, Black hole entropy function, attractors and precision counting of microstates,

Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

[28] S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, Extremal black hole and flux vacua

attractors, Lect. Notes Phys. 755 (2008) 115 [arXiv:0711.4547] [SPIRES].

[29] F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072

[hep-th/0404116] [SPIRES].

[30] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,

Princeton U.S.A. (1992).

[31] R. Kallosh and B. Kol, E7 symmetric area of the black hole horizon,

Phys. Rev. D 53 (1996) 5344 [hep-th/9602014] [SPIRES].

[32] M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality,

Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [SPIRES].

[33] K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and

string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [SPIRES].
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